Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 4, 2025
-
Abstract This work presents an algorithm for automatic detection of anomalous electron heating (AEH) events in the auroral E‐region ionosphere using data from the Poker Flat Incoherent Scatter Radar (PFISR). The algorithm considers both E‐region electron temperature and magnetically conjugate electric field measurements. Application of this algorithm to 14 years of PFISR data spanning 2010 through 2023 detected 505 AEH events. Measured electron temperatures increase linearly with plasma drift speeds. Statistical trends of AEH occurrence as a function of space weather indices (AE and F10.7) demonstrate correlations with the solar cycle and geomagnetic activity levels. The magnetic local time occurrence rates show preferences for dusk and dawn with most events in the dusk sector. Observed AEH events tend to appear in regions of relatively low electron density and do not appear inside intense auroral arcs with high electron density. Furthermore, AEH detection requires a higher electric field than predicted by the threshold for a positive growth rate of the Farley‐Buneman instability (FBI), according to linear fluid theory. The implications of these findings for kinetic theories of FBI and AEH are discussed.more » « less
-
Free, publicly-accessible full text available November 4, 2025
-
In prior work, we proposed a cross-layer architecture called Multicast-Push Unicast-Pull (MPUP) for Software Defined Networks (SDN) to support a reliable file-stream multicast application. In this work, we improved the algorithms used to set parameters: transport-layer sender retransmission timer, VLAN rate (which is also the sending rate) and sender-buffer size. Experimental evaluation using feeds with metadata collected from real meteorology file streams was conducted. A significant finding is that the throughput achieved is smaller than the VLAN/sending rate even though file blocks are multicast continuously in UDP datagrams. Sender-buffer waiting times and propagation delays are the main reasons for the degraded throughput. For example, increasing the VLAN rate from 20 Mbps to 500 Mbps, reduced the degradation from 90% to 45%. However, the degradation increased from 45% to 58% when the VLAN rate was increased from 500 Mbps to 1 Gbps. We found an increase in the number of block retransmissions at the higher rates, which explains this increased degradation. Increasing RTT from 0.1 ms to 100 ms caused throughput to drop from 274.8 Mbps to 27.6 Mbps on a 500 Mbps VLAN. If transmission delay was a significant component in total latency, then throughput degradation relative to VLAN rate would be small; however, the meteorology file-streams used in our study have small-sized data products. Due to bandwidth borrowing between VLAN and IP-routed services, VLAN utilization is not important, and hence we recommend using the smallest rate at which sender-buffer waiting times are insignificant.more » « less
An official website of the United States government

Full Text Available